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A geometrically conservative one-dimensional (1D) arbitrary Lagrangian—
Eulerian (ALE) version of the advective upstream splitting method (AUSM) shock
capturing scheme is presented. The spatial discretization is based on a modified
form of AUSM which splits the flux vector according to the eigenvalues of the
compressible Euler system in ALE form and recovers the original flux vector split-
ting in the absence of grid movement. The generalized form of AUSM is given
the name AUSM(ALE). Extension to second-order accuracy is achieved by a piece-
wise linear reconstruction of the dependent variables with total variation diminishing
limiting of slopes. The ALE formulation is completed by incorporating an implicit
time-averaged normals form of the geometric conservation law for cylindrically and
spherically symmetric time-dependent finite volumes which is valid for any two-level
time-integration method. The effectiveness of the method for both fixed and moving
grids is demonstrated via several 1D test problems including a standard shock tube
problem and an infinite strength reflected shock problem. The method is then applied
to a benchmark spherically symmetric underwater explosion problem to demonstrate
the efficacy of the numerical procedure for problems of this type. In the two-phase det-
onation problem the spherical surface separating the expanding detonation-products
gas bubble and the surrounding water is explicitly tracked as a Lagrangian surface
using AUSM(ALE) in conjunction with appropriate equations of state describing
the detonation-products gas and water phases. The basic features of the spherically
symmetric detonation problem are discussed such as shock/free-surface interaction
and late time hydrodynamics.

Key Wordsflux splitting; arbitrary Lagrangian—Eulerian; geometric conservation
law; underwater explosions.
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INTRODUCTION

One class of problems in computational fluid dynamics that has undergone subste
development over the last decade is that in which the fluid domain boundary is either
dependent or unknown a priori and determined as part of the solution [1, 2]. Free-sut
and fluid/structure interaction problems are typical of problems in this class [3, 4]. A nat
way to formulate moving boundary problems is the so-called arbitrary Lagrangian—Eule
(ALE) form of the fluid dynamic conservation laws where the domain boundary and inte
control surfaces are allowed to move arbitrarily in time and which recovers the Eulel
and Lagrangian forms as special limiting cases of the general ALE form [5]. When
conservation laws admit discontinuous solutions, i.e., shocks and contacts, special
must be taken in the prescription of the numerical flux to ensure monotonicity and st
resolution of discontinuities. Over the past decade characteristic-based upwind met
have established themselves as the methods of choice for prescribing the numerice
function in shock capturing schemes [6]. Such methods are typically first order in their b
form with higher order accuracy achieved through reconstruction of primitive variak
under a monotonicity principle such as total variation diminishing (TVD).

Upwind methods may generally be classified as either flux difference splitting (FL
or flux vector splitting (FVS) schemes, with the methods of Roe [7] and Van Leer |
respectively, being popular representatives of the two approaches. A recently devel
scheme of the Van Leer type which can arguably be thought of as a natural cand
for ALE formulations is the advective upstream splitting method (AUSM) [9-11]. In th
scheme the numerical interface flux of the Euler equations is parsed into convective
pressure contributions as required by the ALE form of the conservation laws. The AU
based ALE scheme presented here is particularly well suited to applications involving
fluid state equations and is offered as an alternative to the ALE scheme based on |
approximate Riemann solver for ideal gas flows [12].

ALE FORM OF THE COMPRESSIBLE EULER EQUATIONS

The equations governing inviscid compressible flow in the absence of heat condu
stated in weak or finite volume form are [13, 14]

0
— WdQ-|—f. FU,n,s)dI' =0, Q)
ot Jown Tt

where
W=[p,pv,pa]" and FMW,n,s)=(v—9-nW—[0,—pn,—pv-n]"
or alternatively
F(W,n,s)= (v—9) -n[p, pv, phy]" = [0, —pn, —ps-n]".
In Eqg. (1), W is the vector of conserved variables aRdis the vector of inviscid flux
components. The first term in the flux vector is the convective flux of the conserved varia

through the time-dependent control surfaceith outward unit normah. The second term
is the vector of source terms which, for inviscid flows, contains only the pressure ac
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and the work done on the control volunSe The fluid velocity vector, control surface
velocity vector, fluid density, and pressure are givervpbgnds, p, p, respectively. The
alternative form of the flux vector is arrived at through the introduction of the total enthal
h:. In Eq. (1),s=V corresponds to the Lagrangian view of conservation whesea8
corresponds to the Eulerian view. Because of the generality or, in other words, arbitrari
of the description offered by Eq. (1) it is often referred to as the arbitrary Lagrangic
Eulerian form of the conservation laws.

In addition to the basic conservation laws expressed by Eq. (1) an equation of state (E
is necessary to provide closure to the Euler system and establish the relationship bet
at most, three thermodynamic variables. Here the EOS is taken to be of the form

p=pp,e), (2a)

and the sound speed|,can be determined from the state relation by

dp| _dpp , 9p
2
=——| = —= 4+ —. 2
© T dol, " dep? " ap 2D
The internal energyg, is related to the total energy by
_ |v|?
&g=e+ o 3

and the total enthalpty, which appears in the alternative form of the flux vector of Eq. (1
is defined as

ho=a+" . 4
P

Equation (1) expresses the fundamental conservation laws for mass, momentum, and €
and is valid for any time-dependent finite volume of arbitrary shape. For the purpos
hand the flow is assumed to be one-dimensional (1D) and Eqg. (1) is applied to the t
finite volumes shown in Fig. 1, viz. a spherical arc volume, an annular arc volume, at
right hexahedron, associated with spherical, cylindrical, and Cartesian coordinate syst
respectively.

FIG. 1. Finite volumes used to develop 1D discrete form.
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GEOMETRIC CONSERVATION LAW

Under certain assumptions regarding the flow field Eq. (1) reduces to a purely geom
statement relating the control volurft), the control surfacg(t), the control surfacs(t),
and the unit normah(t). This statement is often referred to as the geometric conservat
law (GCL), which may be regarded as an identity that must be satisfied, either explicitl
implicitly, if the conservative property is to be maintained [15]. Geometrically conservat
formulas for general polygons and polyhedra used in finite volume schemes can be f
in Zhanget al.[16] and Nkonga and Guillard [17]. A generalized treatment of the GCL
presented by Lesoinne and Farhat [18] which recovers the time-averaged normal forn
for polygons and polyhedra derived in [16, 17]. Owing to a particular interest in 1D radie
symmetric flows, time-averaged normal formulas for the curvilinear finite volumes in Fic
are derived here. For a broader treatment of the GCL for multi-dimensional problems
reader is referred to the aforementioned citations.

Although the continuity equation is typically used to derived the GCL any of the cons
vation laws expressed by Eq. (1) can be used with equal facility to derive the GCL ur
appropriate restrictions on the flow variables. Assuming uniform velocity and density fie
and a closed control volume the continuity equation becomes

— + (s-n)ydr =0. (5)
8t ()

Furthermore, assuming the control surface movement to be 1D and integrating ove
control volume Eq. (5) reduces to the semi-discrete form

de

Tl (SD)iq1/2 + (SM)i—1/2 = 0. (6)

Integrating Eq. (6) using a two-level time-integration scheme gives

t+At
QM QN = / [(SD)it1/2 — (SD)i—1/2] dt. @)
t

Equation (7) is a statement of geometric conservation and is a constraint which mu
satisfied by any conservative two-level 1D finite volume scheme. It may be satisfiec
updatingS2 (t) through an explicit evaluation of Eq. (7) or implicitly by defining the contra
surface areaB(t) as a weighted average of theandn + 1 time level areas such that Eq. (7)
is satisfied exactly by construction.

As noted in [18], when the integrand of Eq. (7) is a linear functiort tffie integral
can be computed exactly by sampling the integrand once at the midpoint of the inte
When the integrand is quadratic tira two-point rule is required to evaluate the integra
exactly. For the hexahedron, annular arc volume, and spherical arc volume shown in F
the integrand in Eq. (7) is a zero-, first-, and second-degree polynontiatéspectively.
Consequently, for the finite volumes considered here, it is convenient to denote all ¢
compliant time-averaged quantitiesras- 1/2 time-level quantities. Evaluating Eq. (7) at
the midpoint of the time interval gives

QM — QM = At[(SD)iy1/2 — (SD)i—12]" Y2, (8)
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where, following [18], the grid velocity is assumed to be constant over the time step ar
given by

12 (XM —xM)iia
Sn-:—l//z = TI/ 9

Focusing on movement of the-1/2 face of the hexahedron in Fig. 1, the change in volurr
from time-leveln ton + 1 is given by

QM — QM = (X" — x")i412dy dz (10)
Equating Egs. (8) and (10) gives
n+1/2

(Xn+1 _ Xn)i+1/2 dy dz: At (Sr)i+1/2 . (11)

Inspection of Eqgs. (9) and (11) shows the GCL expressed by Eq. (7) to be trivially satis
in the Cartesian case by

13 =dydz (12)

The situation for cylindrical and spherical coordinate systems is somewhat different s
the integrand in Eqg. (7) is no longer a constant. Specifically, the change in the annula
control volume from time leveh to n + 1 is given by

1
QM o = é((X'"“Ll)2 — (X)?)ij12d0 dz, (13)

wherex is now a generic coordinate in the radial direction. Factoring the right-hand side
Eq. (13) and equating with Eqg. (8) gives

1
5((x”+l — XM X" 4 x")it1/2d0 dz= At(SD)] 2 (14)

Inspection of Eqgs. (9) and (14) shows the GCL is nontrivially satisfied in the cylindric
case by

1
Fin:ll//Zz = E(Xnﬂ +xM)ij12d6 dz (15)

For the spherical arc control volume the change in volume from time teteln + 1 is
given by

2
QM = Q= (D = ()2 d6 (16)
and again factoring the right-hand side of Eq. (16) and equating with Eq. (8) gives

2
SO XM XX+ )20 = AUSTI. (17)
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Inspection of Egs. (9) and (17) shows the GCL is nontrivially satisfied in the spherical c
by

2
s = (T2 4 XXM 4 ()12, (18)

From Egs. (15) and (18) it can be seen that the control surface areas which implicitly sa
the GCL are expressed as weighted averages of the areasatritie + 1 time levels. The

time-averaged formulas are summarized below for the three coordinate systems sho
Fig. 1. For completeness formulas are also given for the control volumes associated
each of the coordinate systems. In the following formulas the differential lengths and an
appearing in the above development have been set equal to one since they are arbitre

iz =1 (Cartesian

(19a, 19b)
QM = (X172 — Xi—12)™ Y
1 . .
s = E(Xn+l +x"iz12  (cylindrical)
1 (20a, 20b)
QM = 5((Xi +1/2 — Xi—1/2) (Xip1/2 + Xi—12)™"
n+1/2 2 n+1,2 nyn+1 N2y .
s = 2 ((X"H2 4"+ (xM?)it2  (spherical
X (21a, 21b)
2 Nl
QM = 3 (172 — Xi—1/2) (Xi+1/2)% + Xi 412X —1/2 + (Xifl/z)z))n e

The n, n+ 1 superscript appearing in the control volume formulas above indicate tl
are valid instantaneously at either ther n 4 1 time level. Equations (19)—(21) have beel
verified to satisfy the GCL to machine precision for arbitrary grid movement. Consequer
no artifact due to grid motion is introduced in the solution of the conservation laws if th
geometric relations are used in assembling the discrete form of Eq. (1). It may be n
that Egs. (19)—(21) reduce to the standard geometric formulas for differential volumes
areas in the absence of grid motion.

THE INTERFACE FLUX

Although a number of characteristic-based upwind methods are available for spat
discretizing the compressible Euler equations (e.g., Roe’s scheme [7], Godunov’s me
[19], etc.) AUSM has a number of attributes that make it particularly attractive in t
context of an ALE formulation. More precisely, each member of the AUSM family
schemes (AUSM, AUSMI, etc.) separates the pressure flux from the convective flux
the formulation of the basic scheme [9, 10]. This separation is essential to the ALE forr
the conservation laws as seen in Eg. (1). In addition, AUSM can easily and simply acc
modate general equations of state for real fluids since all that is required is the interrog:
of the state relations for pressure and sound speed. Finally, the AUSM family of sche
are efficient and simple to implement compared to many popular and enduring sche
such as Godunov’s method or Roe’s scheme for real fluids [20].

The prescription for the interface flux in a FVS scheme is based on a decompos
or splitting of the flux vector into right and left travelling waves with the contribution ¢
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each wave to the total flux determined by the local flow conditions in accordance v
the eigenstructure of the Euler system. Typically, splitting is performed using the n
linear eigenvalues as the basis functions for developing second-degree polynomial spl
functions [6, 8].

In the absence of grid movement it is well known that the set of 1D Euler equation:
strong quasi-linear form has eigenvalues [6]

A=U-—C, A2 = U, A3=U+C. (22a)
Inthe presence of grid motion the same system can be shown to have modified eigenv
AMm=0-c =0, Az=0+c, (22b)

where( is simply the fluid velocity relative to the interface velocity, i&= u — s. Conse-
quently, it is a rather simple step to construct splitting functions based on the ALE eic
values, Eqg. (22b), as long as the separation of pressure and convection terms are main
in the splitting as required by the ALE form. This is precisely the case with AUSM.

In what follows the ALE form of the U-split version of AUSM is presented. The resultir
scheme is given the name AUSM(ALE). The scheme is developed in Cartesian coordir
for clarity with the final form valid for the three coordinate systems considered here.
1D flows the semi-discrete form of Eq. (1) is given by

d
Wi+ R =0, (23a)
where the residuals resulting from the spatial discretization are given by

R = [(FI)it12 — (FT)i—y2]. (23b)

The specific form of the ALE flux vector appearing in Eq. (23b) is not unique. Perhaps
most natural choice is given by

o 0
F=0|pu|+|p|. (24a)
P& pu

This form [14] involves the work flux gu) in the energy equation which can easily be
computed as a product of the velocity and pressure splittings available in the U-split f
of AUSM. However, numerical experiments with AUSM indicate the numerical flux bas
on Eg. (24a) results in a glitch at the downwind edge of the expansion wave for the
problem on a fixed grid.

An alternative ALE flux vector given in Eq. (1) is

P 0
F=0|lpul|+|p]|. (24b)
pht ps

In this form the work flux is naturally accommodated by the introduction of the tot
enthalpy with the ALE flux vector recovering exactly the conventional flux vector in tl
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i+1/2

FIG. 2. Notation for interface flux at+ 1/2.

limit of zero grid velocity. As a result any flux splitting can be applied directly to the AL
flux vector, Eq. (24b), and have the original splitting recovered exactly on a fixed g
Consequently, Eq. (24b) is considered to be the preferred ALE flux vector and is ado
for use in AUSM(ALE).

Finally, it should be pointed out that any member of the AUSM family of schemes car
applied to the ALE flux vector of Eq. (24b). For example, the M-split scheme At EIMI]
has been recently extended to ALE form and applied to an aeroelastic problem invol
transonic flow of an ideal gas [21]. Numerical experiments with other EOS have indice
the U-split version of AUSM to be somewhat more robust when used in conjunction v
real fluid state equations, strong shocks and strong contact discontinuities such as
encountered in the application section of this paper. This is due in part to the fact that th
split version is intrinsically more dissipative than the M-split versions [11]. Consequen
the U-split version is adopted here for the development of AUSM(ALE).

The U-split version of AUSM [11], when generalized to accommodate an interface m
ing with velocity s, gives the following prescription for the flux at the-1/2 interface
separating stated, and®r as shown in Fig. 2,

0
1 . R A
Fit12 = > [Git1/2(PL + PR) — |Ui12[(Pr—P)] + | P , (25)
PS1ii12

where in the 1D case
@ =[p, pu, ph]".

Here the fluid velocity relative to the moving interface is given by

Giy12 = 0 + OR, (26)
where
+i@+c? ifjoj<c
0 = <1 . | (27)
s@Lap otherwise
and

Uir12 =07 4+ 0g + 81172 (28)
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The pressure at the interface is given by

Pit12 = P + Pgrs (29)
where

(£2-9) iflal<c
. (30)
otherwise

In Eqg. (25), p is introduced so that the homogeneous divergence form of Eq. (23) ¢
be retained in cylindrical and spherical coordinates. The expressions &mwe derived
by reverting to the strong form of the momentum equation in cylindrical and spheri
coordinates, assuming the pressure gradient to be constant and integrating over the ¢
volume. This assumption is consistent with a spatially second-order accurate scheme
expressions fop at thei + 1/2 interface are given below with similar expressionsfiat
thei — 1/2 interface:

Pit12 = Pit12 (Cartesiain (31)
Piitz = Piray2 (1+ Xi_l/z) (cylindrical) (32)
2 Xit1/2
2
i Xi_ Xi_ ,
B = p|+31/2 [1+ i—1/2 +( i 1/2> ] (spherical. (33)
Xit+1/2 Xi+1/2

The prescription for the flux splitting in AUSM(ALE) can be seen in Eq. (27) and Eq. (3
to parse the flux based on the eigenvalues of the ALE form of the conservation laws
to reduce exactly to the fixed grid AUSM splitting in the absence of grid motion. Furth:
more, it can be shown that the presence of the pressuregle)xr{ the ALE flux vector,

Eq. (24b), does not alter the eigenvalues of the system beyond the modifications indicat
Eq. (22b). Consequently, AUSM(ALE) represents a generalization of the fixed grid U-s
AUSM scheme. The performance of the scheme when used in conjunction with the
metrically conservative formulas (Egs. (19)—(21)) will be tested in the following sectior

NUMERICAL FLUX AT A LAGRANGIAN INTERFACE

The utility of the ALE form lies in the fact that grid motion may be arbitrarily specifiec
The flexibility offered by arbitrary grid motion can be exploited to great advantage
a variety of circumstances. For example, if the fluid dynamics are forced or otherv
influenced by boundary motion, the boundary conditions can often be easily impleme
by fixing the grid to the moving domain boundary. Alternatively, by appropriate definiti
of grid velocity a Lagrangian surface(s) can be established in the computational domai
the purpose of distinguishing and tracking material boundaries. By definition, a Lagrant
surface is established at a control surface by setting the interface velocity equal tc
fluid velocity at the interface. This can be done wherever the fluid velocity is defir
and continuous. After specifying the grid velocity at one point, for example, at a dom
boundary or a contact surface, then it is usually a simple matter to construct a suitable
linear, exponential, etc.) distribution of grid velocity at all other points in the domain.
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By definition, the convective flux vanishes at a Lagrangian surface. Inspection of Eq.
reveals that the dissipation term in AUSM(ALE) also vanishes there. Consequently,
only nonvanishing flux components at a Lagrangian surface are the pressure fluxes i
momentum and energy equations. In these circumstances it has been found that introd
a common speed of sound at the Lagrangian interface leads to an improvement i
performance of the scheme at the interface. A common speed of sound has also beel
in the development of AUSM and AUSMD/DV schemes to unify the velocity and Mact
number splittings [10, 11]. The common sound spegdroposed in the AUSMD/DV
scheme is adopted here and it is stressed that the common sound speed is introduce
at Lagrangian interfaces. The common sound speed is given by

Cm = Max(C_, Cr). (34)

EXTENSION TO SECOND-ORDER ACCURACY

In the previous section thie and R states at thé + 1/2 interface were left unspecified.
If these states are taken as the cell-averaged values in the adjoining control volume
resulting scheme is spatially first-order accurate. Here second-order accuracy is achiev
alinear one-sided reconstruction of the state variables with TVD-based limiting of slopes
Specifically, interface values @f u, ande are reconstructed from the cell-centered value
according to

AX
MDit12 =V + ¥ ()M _Vi_l)<AXi+AXi1> (35)
VIR S VUV c
(VR)it12 = Vin1 ‘V<ri+1>(\/|+2 \/I+1)(Axi+1+AXi+2>’ (36)

whereV is the vector of primitive variable¥ =[p, u, €], r is the slope ratio, given by

. (Vig1 — VD)(AX + AXi_1)
L (Vi = Vi) (AX + AXisp)

(37)

and W (r) is the slope limiting function, andx; = x; — Xj_1. The minmod limiter is used
in the present formulation [6].

TIME INTEGRATION

Equation (23) is supplemented by an auxiliary equation governing grid movement
the system is integrated in time using a 4-stage low-storage Runge—Kutta scheme [22]
generaim-stage scheme is given by

WO — Wn (38a)
Wk — W — g AtRKD k=1 ....m (38b)
Wit — (38¢c)

where the supplemented state and residual vettbasd R are defined as

W =[x, p2, pu2, pa]” and R=[-s R]".
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The residual vector appearing above is assembled using the time-averaged areas an
point grid velocities defined in Egs. (19)—(21) and Eq. (9), respectively, as required by
GCL. For the 4-stage scheme the coefficients are taken to be

alzz, a2=§ ag,zé a=1
This choice of coefficients leads to a scheme which is fourth-order time accurate for a sy
of linear equations. Itis stressed that the interface velagigppearing in the supplemented
residual vector and throughout the preceding development is arbitrary and ultimately
defined.

Recalling the eigenvalues of the ALE form, the Courant numbegis defined here as

(39)

7 = max 192 .

AX

BOUNDARY CONDITIONS

The nonlinear characteristic equations for the 1D Euler set in the absence of grid mc
are
dp du  npuc

7:|: c—
at %t

0, (40)

where the time derivative is the total time derivative along(th&: c) characteristics given
by

d ad ]
In Eqg. (40),n takes on the values 0, 1, and 2 for the Cartesian, cylindrical, and spherical
ordinates, respectively [23]. A rigid wall perfectly reflecting boundary condition applical
to subsonic conditions can be constructed from Eq. (40), which has proven to perform
sonably well for the three coordinate systems considered here by simply neglecting the
term (which is singular at the origin of the cylindrical and spherical coordinate systems
Eq. (40) and integrating the remaining terms.

For subsonic condition&l — ¢) is an outgoing wave at the left computational boundar
and the wall boundary pressupg can be simply extracted from Eq. (40). In terms of al
explicitm-stage scheme a purely reflecting condition at the left computational boundary

Pt = pf — (Upo)f, (42a)

where the subscrigt denotes the cell centered value immediately adjacent to the w.
For purely reflecting subsonic conditions at the right computational bouridary) is an
outgoing wave giving

KL = pk + (upc)k. (42b)

This is the same prescription for the wall pressure used in [10] and is all that is neede
complete the boundary flux prescription at a rigid wall.
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FIG. 3. Comparison of fixed and moving grid solutions for the shock tube problem (Sod).

BASIC TEST CASES

All computed results shown in this section were obtained using a 100-cell discretiza
ando =0.5. The ideal gas law is used as the EOS for the basic test cases and is giver

p=(y —Dpe (43)

Figure 3 compares the AUSM(ALE) solution with the exact solution for the Sod [2
shock tube probleny = 1.4). For this test case a Lagrangian surface is established at
contact discontinuity and the grid velocity is tapered linearly to zero at both ends of
computational domain, as shown in the figure. Both fixed and moving grid results ar
good agreement with the exact solution for this case, although the contact is more sh
resolved by the moving grid method since the dissipation vanishes at the Lagrangian cc
surface.

The infinite reflected shock proble(p =5/3) of Noh [25] is a particularly appropriate
test case since exact solutions are available for the three coordinate systems invest
here. Figure 4 compares the AUSM(ALE) solution with the exact solution in Cartes
coordinates. The solution computed using the fixed grid bears little resemblance to the
solution for this case. It should be recalled that AUSM(ALE) recovers exactly the U-s
version of AUSM when the grid is fixed. Consequently, it may be concluded that the U-s
version of AUSM performs very poorly for this test case. Difficulties with the basic AUS
scheme [9] when applied to reflected shock problems have been reported elsewhere

The moving grid solution was generated by establishing a Lagrangian surface a
right computational boundary and linearly tapering the grid velocity to zero at the orig
as shown in the figure. With the moving grid the solution is correctly computed althot
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FIG. 4. Comparison of fixed and moving grid solutions for the infinite reflected shock problem (Cartes
case).

there is some underheating at the origin. The improved performance of the moving
calculation may be attributable to two factors. First, the role of the nonlinear convec
terms has been lessened since the grid is moving in the same direction as the fluid. Se
the grid motion compresses the grid points into the postshock region, resulting in hig
resolution there. Results for the cylindrical and spherical coordinate systems are shov
Figs. 5 and 6.

In the cylindrical and spherical cases similar accuracy is achieved for both the fixed
moving grid computations, although the moving grid results are somewhat more diffu:
compared to the fixed grid results. Also the overshoot at the shock has been eliminated
grid movement. The oscillations which are evident at the origin in the cylindrical and spt
ical cases may be associated with the singularity of the characteristic boundary condi
Eq. (40), at the origin of these coordinate systems. An investigation of the singularity
the boundary condition at the origin is beyond the scope of the present paper, althor
refinement of the grid at the origin was found to eliminate the oscillations in Figs. 5 an

APPLICATION TO A SPHERICALLY SYMMETRIC UNDERWATER EXPLOSION

To determine the utility of the method for multi-phase problems with strong shock ¢
contact discontinuities AUSM(ALE) is applied to a benchmark 1D spherically symmet
underwater detonation problem. This problem has been investigated by several au
[27, 28] and a benchmark numerical solution is available [29]. The arbitrariness of
control surface motion that is available with the ALE form of the conservation laws
utilized in this problem to unambiguously maintain the boundary separating the gas
condensed phases of an underwater explosion.
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FIG. 5. Comparison of fixed and moving grid solutions for the infinite reflected shock problem (cylindric
case).
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Since the problem is essentially a two-phase spherical analog to the classical shock
problem the initial conditions (in Sl units) are given using standard Riemann problem ni
tion. The initial conditions are [630(10%), 0, 8.381(10%], and [1025(10%), 0, 1.0(10°) &
where the p, u, p]. refers to the detonation-products phase gndi[ p]r refers to the
water phase. The charge is a 16-cm-radius TNT sphere. These are the same initial conc
used in the “uniform Euler” case of [29]. The Jones—Wilkins—Lee (JWL) EOS is used
the detonation-products gas [30] and an isentropic Tait relation for liquid water [31] is us
The specific state relationships are given by

D= A<1 - ‘”p> exp R/P 4 B <1 _ e >epr2”°/” fwpe (WL (44)
R1p0 R200

— p ! i
p=B o —1)+A  (Tait). (45)

The JWL constants for TNT ara = 3.712(10'%), B =3.230(10°), R; =4.15, R, = 0.95,
»=0.30, pp = 1.630(10%), gy = 4.290(10°). The Tait constants for water afe= 1.0(10°),
B =3.31(10%), pp = 1.02510%), y = 7.15.

The isentropic Tait equation for water does not involve internal energy and is conseque
restricted to the liquid phase. When the Tait form is used the energy equation uncouples
the remaining conservation laws and a reduced Euler system governs the fluid dynal
Other EOS have been used for water in underwater explosion studies [29].

The calculation was done using 600 cells in the detonation-products gas phase an
same number in the water phase with= 0.5. A Lagrangian surface is established at th
material and phase interface by constraining the grid velocity to match the fluid velo
at the interface. The grid velocity is further constrained to match the primary shock w
speed at the outer boundary of the domain and to be zero at the origin. At intermec
points between these constraints the grid velocity is linearly interpolated. This arranger
maintains the material separation of the liquid and gas phases and ensures that all grid |
participate in the resolution of the flow field as the primary shock wave propagates outw
The phase boundary is indicated in Figs. 7-9 by the open square symbol in the pre:
profiles.

As shown in Fig. 7 the initial phase of the detonation begins with the primary shock w.
moving to the right into undisturbed ambient fluid and an expansion wave moving to the
toward the origin. The expansion wave reflects from the origin as an expansion resu
in a region of very low pressure near the origin. The outward inertia of the expanding
is eventually overcome by the centripetal pressure gradient and the gas reverses dire
forming an inward moving shock wave which in turn reflects as a shock from the oric
This reflected secondary shock wave then propagates outward toward the water intel
The flow in the gas phase becomes supersonic during this phase of the detonation, as -
in the figure.

Figure 8 shows the secondary shock wave arriving at the gas/water interface and s
guently being partially transmitted to the water phase and partially reflected back intc
gas phase. The reflected portion is again reflected from the origin, resulting in a ter
outward moving shock which again will be partially transmitted and partially reflected
the interface. This process repeats numerous times, each time at a reduced shock stt
as shown in Fig. 9. The primary, secondary, and tertiary waves can be seen most clea
the pressure profiles of Figs. 8 and 9.
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FIG. 8. Shock/free-surface interaction phase of spherically symmetric underwater explosion problem.
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FIG. 9. Incompressible phase of spherically symmetric underwater explosion problem.

By the time the primary shock wave has traveled approximately 50 charge radii
pressure within the expanding gas bubble has dropped well below the ambient pressure
centripetal pressure gradient gradually halts the expansion of the detonation-product
bubble, which ultimately reverses its expansion and enters the collapse phase. Com
results using AUSM(ALE) indicate the bubble reaches a maximum radius of 2.19 n
t =65.8 ms. These results are within 1% of the benchmark values reported in [29] usir
two-step Lagrange plus remap Godunov scheme. The Mach number is typically less
101 during this phase of the detonation event, as shown in Fig. 9, and the flow is essent
incompressible.

CONCLUSIONS

The ALE version of AUSM presented here when used in conjunction with a geometric:
conservative prescription for time-dependent control surface areas offers an accurat
robust method for capturing strong shock, contact, and phase discontinuities on arbitr
moving grids. Although the development given here was limited to 1D the extensior
multi-dimensions is relatively straightforward using either a general coordinate trans
mation of a logically connected rectangular grid or an unstructured finite volume me
The splitting of flux components based on the eigenvalues of the ALE form and the
troduction of a common sound speed at a Lagrangian surface greatly facilitate acct
shock capturing in the presence of grid movement. The utility of arbitrarily introduci
a Lagrangian surface into the computational domain was demonstrated in the two-p
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underwater detonation problem where the establishment of a Lagrangian surface en

th
fe

e unambiguous separation of water and gas phases during the calculation. The comg
atures of the method are its simplicity and the ease with which real fluid state relat

can be accommodated. Finally, the method is shown to recover exactly the U-split ver

of

AUSM in the absence of grid motion.
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